Injection Locking and Modu ation

R. J. P-gorzelski March 1997

• •

Inject on Locking

$$V = Ae^{j\theta} = Ae^{j\int \omega(t)d}$$

Adler's Equation:

$$\frac{d\theta}{dt} = \omega_o + \left| \frac{\omega_o}{2Q} \frac{A_{inj}}{A} \right| \sin(\theta_{inj} - \theta)$$

$$\frac{d\theta}{dt} \approx \omega_{o} + \Delta \omega_{lock} (\theta_{inj} - \theta)$$

where
$$Q = \omega + \phi$$

Ref: York, MTT-41, cct. '93

Injection Locking (cont.)

$$\frac{d\theta}{dt} + \Delta \omega_{lock} \theta = \omega_o + \Delta \omega_{lock} \int \omega_{inj}(t) dt$$

$$\frac{d^2\theta}{dt^2} + \Delta\omega_{lock} \frac{d\theta}{dt} = \Delta\omega_{lock}\omega_{inj}(t)$$

• •

Linear Chirp Modulation

If

$$\omega_{inj}(t) = \omega_m + at$$

then

$$\omega(t) = \omega_{inj} - \frac{a}{\Delta \omega_{lock}}$$

•

Linear Chirp (cont.)

- Constant frequency offset leads to linear phase offset.
 - This eventually results in loss of lock.
 - Before loss of lock, the assumption of small sine function argument is violated.
- •Nevertheless, the calculation is informative:

Sinusoidal Frequency Modulation

If

$$\omega_{inj}(t) = \omega_{c} + \alpha \cos(\omega_{m}t)$$

then

$$\omega(t) = \omega_{c} + \alpha \cos[\omega_{m}(t - t_{d})]$$

where

$$t_d = \frac{1}{\Delta \omega_{lock}}$$

Sinusoidal FM (cont.)

- •Lock can be maintained if modulation index is small.
- •Small sine argument assumption is valid for small modulation index.
 - Integral of frequency offset is sinusoidal.
 - Phase deviation is limited.